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Theoretical model of neuronal population coding of stimuli with both continuous
and discrete dimensions
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~Received 16 March 2001; published 25 July 2001!

In a recent study, the initial rise of the mutual information between the firing rates ofN neurons and a set of
p discrete stimuli has been analytically evaluated, under the assumption that neurons fire independently of one
another to each stimulus and that each conditional distribution of firing rates is Gaussian. Yet real stimuli or
behavioral correlates are high dimensional, with both discrete and continuously varying features. Moreover, the
Gaussian approximation implies negative firing rates, which is biologically implausible. Here, we generalize
the analysis to the case where the stimulus or behavioral correlate has both a discrete and a continuous
dimension, like orientation and shape could be in a visual stimulus, or type and direction in a motor action. The
functional relationship between the firing patterns and the continuous correlate is expressed through the tuning
curve of the neuron, using two different parameters to modulate its width and its flatness. In the case of large
noise, we evaluate the mutual information up to the quadratic approximation as a function of population size.
We also show that in the limit of largeN and assuming that neurons can discriminate between continuous
values with a resolutionDq, the mutual information grows to infinity like ln(1/Dq) whenDq goes to zero.
Then we consider a more realistic distribution of firing rates, truncated at zero, and we prove that the resulting
correction, with respect to the Gaussian firing rates, can be expressed simply as a renormalization of the noise
parameter. Finally, we demonstrate the effect of averaging the distribution across the discrete dimension,
evaluating the mutual information only with respect to the continuously varying correlate.

DOI: 10.1103/PhysRevE.64.021912 PACS number~s!: 87.19.La, 87.18.Sn, 87.19.Bb
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I. INTRODUCTION

The strategy used by populations of neurons to code
external stimuli or behavioral correlates is a major issue
has been recently investigated both through data analysis
theoretical modeling. The mutual information between ex
nal correlates and the spiking activity of the population
one way to assess such coding quantitatively@1#. Several
analyses have focused on the coding of adiscrete set of
stimuli ~@2#, see@3# for a review!, which is the paradigm use
in many experiments@4–7#. In this situation, the mutual in
formation is bounded by the entropy of the stimulus s
Some theoretical studies have also considered the codin
stimuli varying in acontinuousdomain@8,9#, which is inter-
esting with respect to basic properties such as orientatio
visual stimuli, frequency in auditory stimuli, velocity, an
position in motor actions. In particular, in@9#, the authors
have studied the asymptotic~large population! behavior of
the mutual information, with respect to a stimulus with
continuously varying dimension.

To our knowledge, no study has been proposed so
considering a mixture of both continuous and discrete f
tures, which is obviously closer to real-world stimuli or b
havioral correlates. Moreover, the initial rise of the mutu
information for small but increasing population size is mo
relevant for a comparison with estimates from real data
least as far as the possibility of having simultaneous reco
ings from very large populations of neurons is restricted
very few cases.

We have recently analyzed data recorded in the mo
areas of behaving monkeys, in the laboratory of Eilon V
dia. The monkeys moved a manipulandum in several p
sible directions~approximating a continuous correlate! and
with different combinations of arms~four typesof move-
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ment, i.e., a discrete correlate!. In trying to characterize the
neural coding of these movements, we were particularly
terested in whether, as it is reasonable to expect, diffe
motor areas differ, at least quantitatively, in their codi
properties. The results, obtained from records of activity
areas MI and SMA, will be reported elsewhere@10#; but they
suggest the importance of developing theoretical models
how populations of neurons might code simultaneously d
crete and continuous correlates. For example, one clear
clusion has been that type and direction are notindependent
dimensions of the movement, in the sense, for example,
the information about direction, extracted from the activ
recorded with all movement types, is much lower~roughly
half! of the average information about direction, obtain
with a single movement type.

Can we embody similar properties in a model of t
scheme used by neurons to code movements? What w
then be the dependence of the mutual information on
number of the possible types of movement? How would
depend on the resolution with which the continuous corre
is sampled? How would it depend on the level of noise
fecting the firing patterns?

In a recent work@2#, some of these questions have be
investigated for a set ofp discrete stimuli, under the assump
tion that neurons fire independently of one another to e
stimulus and that the distribution of the firing rates is Gau
ian. The linear and the quadratic approximations to the m
tual information as a function of population size were stud
analytically, in the limit of large noise, as well as the a
proach to the ceiling in the case of small noise. We gene
ize this study considering both a discrete and a continu
dimension in the stimulus, referring specifically to motor a
tions characterized by a direction and a ‘‘type.’’ Nonethele
our model is equally applicable to other complex correlat
We introduce a more realistic conditional firing rate distrib
©2001 The American Physical Society12-1
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VALERIA DEL PRETE AND ALESSANDRO TREVES PHYSICAL REVIEW E64 021912
tion than the simple Gaussian one, and find a simple res
ing correction to the Gaussian model: the analytical exp
sion of the mutual information remains the same, except
a renormalization of the expansion parameter.

We then evaluate the information loss when the origi
activity distribution is averaged across the discrete correl
as is sometimes the case in the analysis of real data, an
mutual information is evaluated solely with respect to t
continuously varying feature. Averaging out dimensions
the stimulus corresponds to losing accuracy in its desc
tion, and hence, the information loss.

Our theoretical analysis allows a direct comparison w
real curves; we present one comparison and discuss pos
causes for the discrepancy between data and model. In
ticular, correlations between neurons, which are not inclu
in the model, might play a relevant role, enhancing or
creasing redundancy in population coding@11#. This issue
will be the object of future work.

II. THE GAUSSIAN MODEL

First, we consider a coding scheme where the distribu
of the firing rates conditional to the movements is Gauss
similar to the case examined in@2#. This assumption implies
that negative rates have a nonzero probability to occur, b
allows an easier analytical treatment. We will examine
more realistic scheme later on.

Consider the following distribution:

P~$h i%uq,s!5)
i 51

N
1

A2ps2
exp„2@$h i2h̃ i~q,s!%2/2s2#…,

~1!

h i is the firing rate of neuroni; q ands parametrize, respec
tively, the direction and the type of movement;h̃ i(q,s) is
the average firing rate of the neuron with the movement
rametrized byq, s.

In general, the directional tuning of real cells in mot
cortices is modulated by the type of movement perform
We show an example of this modulation, with the typic
shape of tuning curves, in Fig. 1. The modulation of t
preferred direction looks weaker than the overall amplitu
modulation.

For our model, we have considered the following fun
tion:

h̃ i~q,s!5«s
i h̄ i~q!2~12«s

i !h i
f , ~2!

h̄ i~q2q i
0!5h i

0 cos2mS q2q i
0

2 D
5h i

0F 1

22m S 2m
m D1

1

22m21 (
n50

m21 S 2m
n D

3cos$~m2n!~q2q i
0!%G , ~3!

«s
i is a quenched random variable distributed between 0

1. The meaning of Eqs.~1!, ~2!, and~3! is that the firing rate
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of neuron i, given the movement parametrized by (q,s),
follows a Gaussian distribution centered around a tun
curveh̄ i(q) whose flatness is modulated through the para
eters«s

i . If «s
i is zero for some particulars, the firing of the

cell does not depend, for that movement type, on the dir
tion of the movement. On the other hand, if«s

i assumes a
fixed value for alls, the directional tuning does not modula
with the type of movement. Tuning curves with a cosinus
dal shape have already been considered to model the d
tional selectivity of sensory neurons@8#. Figure 2 shows the
amplitude of the tuning curve.

We neglect the modulation of the preferred direction w
the type, as it would burden the analytical calculations
will be the object of future analyses.

III. EVALUATION OF THE MUTUAL INFORMATION FOR
THE GAUSSIAN MODEL

We are interested in the mutual information@12# between
the neuronal firing rates and the movements:

I ~$h i%,q ^ s!5K (
s51

p E dqE )
i

dh i P~q,s!P

3~$h i%uq,s!log2

P~$h i%uq,s!

P~$h i%! L
«,q0

, ~4!

where the distributionP(h i uq,s) is given in Eq. ~1! and
^ &«,q0 is a short notation for the average across the quenc
variables$«s

i %,$q i
0%. In fact, we are not interested in a pa

ticular realization of the tuning, but in the average across
its possible realizations.

Equation~4! can be written as

I ~$h i%,q ^ s!5H~$h i%!2^H~$h i%uq,s!&q,s , ~5!

FIG. 1. Directional tuning curve for a cell recorded in the rig
supplementary motor area of a monkey performing four differ
types of arm movement. UniLt, unimanual left; UniRt, unimanu
right; BiSym, bimanual symmetric; BiOpp, bimanual opposite. O
the x axis, angles are in degrees. Notice that the type of movem
strongly modulates the amplitude of directional tuning, but not
much its preferred direction.
2-2
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^H~$h i%uq,s!&q,s5K (
s51

p E dqE )
i

dh i P~q,s!P~$h i%

3uq,s!log2 P~$h i%uq,s!L
«,q0

, ~6!

H~$h i%!5K (
s51

p E dqE )
i

dh i P~q,s!P~$h i%uq,s!log2

3F (
s851

p E dq8P~s8,q8!P~$h i%uq8,s8!G L
«,q0

.

~7!

The calculation of the equivocation̂H($h i%uq,s)&q,s is
straightforward and the result is additive in the populat
size

^H~$h i%uq,s!&q,s5
N

2 ln 2
@11 ln~2ps2!#. ~8!

The linearity inN is standard whenever the conditional d
tribution of firing rates can be factorized across neurons
in Eq. ~1!.

FIG. 2. Cosinusoidal tuning curves as in Eqs.~2! and ~3!. ~a!
m51, modulation for different values of«s . ~b! «s51, modulation
for different values ofm.
02191
s

The evaluation of the rate entropyH($h i%) can be carried
out introducingn replicas@13,14# for both the discrete and
the continuous dimensionsq and s, which allows us to get
rid of the logarithm in Eq.~7!

H~$h i%!52
1

ln 2
lim
n→0

1

n S (
s1 ..sn1151

p E dq1¯dqn11

3E )
i

dh i

1

~2pp!n11

3K )
i 51

N

)
k51

n11
1

A2ps2
exp„2@$h i2«sk

i h̄ i~qk!

2~12«sk

i !h i
f%2/2s2#…L

«,q0

21D . ~9!

Integrating over$h i% and rearranging terms, one obtains

H~$h i%!52
1

ln 2
lim
n→0

1

n S (
s1 ..sn1151

p E dq1¯dqn11

3
~n11!2N/2

~2pp!n11

1

~A2ps2!nN

3K )
i 51

N

exp~2Ri !L
«,q0

21D , ~10!

Ri5(
k,l

$«sk

i @h̄ i~qk!2h i
f #

2«sl

i @h̄ i~q l !2h i
f #%2/@4s2~n11!#. ~11!

A. Large s limit

An exact analytical evaluation of Eq.~10! is not possible
without resorting to some approximation. In line with th
analysis performed in@2# we assume now that the quench
randomness is uncorrelated and identically distributed ac
neurons,

%~$«s
i %!5S)

s
%~«s! D N

,

%~$q i
0%!5@%~q0!#N5

1

~2p!N .

We assume also thath i
f5h f ; i . Then one can write,

K)
i

exp~2Ri !L
«,q0

5^exp~2R!&«,q0
N .

We consider now the limit of large noises; in this case,
sinceR.1/s2, we can expand exp(2R); keeping only terms
of order (N/sk) l , with k<2 andl 51,2 we obtain
2-3
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^exp~2R!&«,q0
N .12N^R&«,q01

N2

2
^R&«,q0

2
512

N

4s2~n11! K (
k,lÞk

$«sk
@h̄~qk!2h f #2«sl

@h̄~q l !2h f #%2L
«,q0

1
1

2

N2

@4s2~n11!#2 (
k,lÞk

(
%,mÞ%

^~«sk
@h̄~qk!2h f #2«sl

@h̄~q l !2h f # !2&«,q0^~«s%
@h̄~q%!2h f #

2«sm
@h̄~qm!2h f # !2&«,q0. ~12!

To first order inN/s2, we obtain,

H~$h i%!52
1

ln 2
lim
n→0

1

n H (
s1¯sn1151

p E dq1¯dqn11

~n11!2N/2

~2pp!n11

1

~A2ps2!nN

3S 12
N

4s2~n11! K (
k,lÞk

$«sk
@h̄~qk!2h f #2«sl

@h̄~q l !2h f #%2L
«,q0

D 21J . ~13!
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This result is valid for a generic directional tuning cur
h(q). We consider now our specific choice, Eq.~3!, exam-
ining the simplest casem51 first. After averaging acros
direction selectivities$q0% and integrating over continuou
replicasq1¯qn11 , we obtain,

H~$h i%!52
1

ln 2
lim
n→0

1

nH (
s1¯sn1151

p
~n11!2N/2

~p!n11

1

~A2ps2!nN

3S 12
N~h0!2

4s2~n11! (
k,lÞk

$@a~a21!1 1
4 #

3^~«sk
2«sl

!2&«1 1
8 ^«sk

2 1«sl

2 &«% D 21J ,

where we have defineda5h f /h0. To perform the average
across the quenched variables$«s% we assume that they ar
equally distributed acrossp movement types, namely

%~$«s%!5)
s

%~«s!5@%~«!#p.

In this case, the sum over indexesk and l generatesn(n
11) identical terms. The summation on discrete replic
yields a factorpn11 multiplying the term^(«sk

)2&« and a

factor pn(p21) multiplying the term^(«sk
2«s1

)2&« , since

this last term is nonzero only whenskÞsl .
Taking the limitn→0 yields

H~$h i%!.
N

2 ln 2
@11 ln~2ps2!#1

1

ln 2

N~h0!2

4s2

3Fp21

p
2@a~a21!1 1

4 #l11 1
4 l2G , ~14!

l15E d« %~«!«22F E d« %~«!« G2

, ~15!
02191
s

l25E d« %~«!«2. ~16!

From Eqs.~14! and~8! the final expression for the mutua
information can be written

I ~$h i%,q ^ s!.
1

ln 2

N~h0!2

4s2 Fp21

p
2@a~a21!1 1

4 #l1

1 1
4 l2G . ~17!

In the more general case of a power 2m of the cosine, in
Eq. ~3!, it is easy to show that the final result can be e
pressed as

I ~$h i%,q ^ s!.
1

ln 2

N~h0!2

4s2 Fp21

p
2~a2A1!2l1

12$A22~A1!2%l2G , ~18!

where

h0A15^h̄~qk!&q05h0
1

22m S 2m
m D , ~19!

~h0!2A25^h̄2~qk!&q05~h0!2
1

24m S 4m
2mD . ~20!

The calculation of the coefficient of the second-ord
term, which multipliesN2/s4 in Eq. ~12!, is slightly more
complex and implies integration of terms with four-replic
interaction. The detailed analytical evaluation is given in t
Appendix. The final result up to the quadratic approximati
reads
2-4
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THEORETICAL MODEL OF NEURONAL POPULATION . . . PHYSICAL REVIEW E64 021912
I ~$h i%,q ^ s!.
1

ln 2 H N~h0!2

4s2 Fp21

p
2~a2A1!2l1

12$A22~A1!2%l2G2
N2~h0!4

2~4s2!2 Fp21

p2

32@2~a2A1!2l1#21Fp21

p
~l12l2!2

1
~l2!2

p G H S 1

22m21D 4

(
n50

m21 F S 2m
n D G4J G J ,

~21!

where the expressions ofl1 , l2 , A1 , A2 are given, respec
tively, in Eqs.~15!, ~16!, ~19!, ~20!. In the limit of largep we
have

I ~$h i%,q ^ s!.
1

ln 2 H N~h0!2

4s2 @2~a2A1!2l1

12$A22~A1!2%l2#2
N2~h0!4

2~4s2!2

3F ~l12l2!2H S 1

22m21D 4

3 (
n50

m21 F S 2m
n D G4J G J . ~22!

Figure 3 shows the linear and the quadratic approxim
tions of Eq.~22! for different values of the expansion param
eterg25(h0/2s)2. It is easy to see that, for very small va
ues of g2, linear and quadratic approximations rough
coincide, while wheng2.0.8, the quadratic approximatio
begins to fail and one should add higher orders in pertur
tion theory.

Figure 4~a! shows the dependence of the mutual inform
tion on the number of typesp. The dependence onp is weak

FIG. 3. Information rise, from Eq.~22!, for different values of
the expansion parameterg25(h0/2s)2; m51; p54; the distribu-
tion %~«! in Eqs.~15! and~16! is just equal to1

3 for each of the three
allowed« values of 0, 1/2, and 1.
02191
-
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for the linear approximation and somewhat stronger for
quadratic one. In both cases, an increase in the numbe
discrete correlatesp produces an increase in the mutual i
formation. The distance between the linear and the quadr
approximation remains asymptotically finite~for p→`!,
contrary to what happens in the case of discrete stimuli al
@2#.

Figure 4~b! shows the dependence of the mutual inform
tion on the width of the directional tuning@see Fig. 2~b!#.
Since we are considering the case when the noises is large,
a very narrow tuning inq corresponds to a larger overlap
the conditional probabilitiesp(huq,s), for most anglesq. A
consequence is that, especially in the linear approximat
the mutual information is a~slowly! decreasing function of
m.

FIG. 4. Mutual information in linear and quadratic approxim
tion as in Eq.~22!, for a sample of 10 cells;g250.7; the distribu-
tion %~«! in Eqs.~15! and~16! is just equal to1

3 for each of the three
allowed« values of 0,1

2, and 1.~a! Dependence on the number o
movement typesp. Dotted lines are for the asymptotes, Eq.~22!;
m51. ~b! Dependence on the powerm of the cosine in Eq.~3!; p
54.
2-5
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B. The limit of large N

We consider now the case when the number of neuron
large. Since we deal with an infinite number of stimuli, t
mutual information is unbounded. Thus, we expect that w
the number of neurons becomes large, and the noise is fi
the mutual information tends asymptotically to infinity.

In order to study this limit we discretize the$q% space into
a finite set ofM52p/Dq anglesq1¯qM , and then we
take the limitDq→0.

The entropy of the responsesH($h i%) can be written

H~$h i%!5K (
s51

p

(
k51

M E )
i

dh i P~qk ,s!

3P~$h i%uqk ,s!log2

3F (
s851

p

(
k851

M

P~s8,qk8!P~$h i%uqk8 ,s8!G L
«,q0

,

~23!

where in analogy with Eq.~1! we define

P~$h i%uqk ,s!5)
i 51

N
1

A2ps2
exp„2@$h i2«s

i h̄ i~qk!

2~12«s
i !h i

f%2/2s2#…, ~24!

and we discretize the average across the directional selec
ties $q i

0% as well as

E dq0%~q0!→(
k51

M

%~qk
0!. ~25!

This situation corresponds to the case when each ne
can discriminate across different anglesq1¯qM with a
resolutionDq.

The calculation can be carried out introducing replicas
in the previous case. One gets

H~$h i%!52
1

ln 2
lim
n→0

1

n S (
s1¯sn1151

p

(
k1¯kn1151

M
~n11!2N/2

~Mp!n11

3
1

~A2ps2!nN
^exp~2R!N&«,q021D , ~26!

where

R5F(
l ,m

$«sl
@h̄~qkl

!2h f #2«sm

3@h̄~qkm
!2h f #%2/@4s2~n11!#G , ~27!

and we have assumed symmetry across neurons in
quenched randomness and in the parameters characte
the conditional distributionP(h i us,qk).
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Now we take the limitN→`. As it is evident from Eq.
~27!, exp(2R)<1 and exp(2R)51 whensl5sm andkm5kl
for each pair of indexes~m,l!. Thus, whenN→`, the only
terms that survive in the sum on replicas are the ones w
s15s2¯5sn11 and k15k2¯5kn11 . Since we havep
stimuli s andM stimuli qk the total number of terms isMp.
Substituting this value in the sums over replicas in Eq.~26!
and putting exp(2R)51 one obtains an expression for th
entropy of the responsesH($h i%), which summed to the
equivocation as in Eq.~8! gives the final result for the mutua
information:

I ~$h i%,q ^ s!5 log2~p!1 log2~M !. ~28!

Now we remember thatM52p/Dq. Taking the limit to
continuous angles,Dq→0, it is easy to see that asymptot
cally the mutual information tends logarithmically to infinity

IV. BEYOND THE GAUSSIAN ASSUMPTION: THE TG
MODEL

So far we have considered the case where the rate d
bution for each neuron is normal. This assumption impl
that negative rates have a nonzero probability to occur;
more the average rate is small and close to zero, the m
this probability becomes large. The bias introduced by
inclusion of negative rates in the space of possible sta
might be even more serious since we have considered
limit of large noise, where the tail of the distribution in th
domainh,0 acquires a significant weight.

Cutting the distribution at zero is not enough to assign
proper weight to under-threshold activity: each time the su
mation of the inputs coming from other units is lower th
threshold the neuron remains silent, and this occurs wit
well-defined probability.

A natural choice for the rate distributionP(h i uq,s) is a
threshold Gaussian plus ad peak in zero~TG model!,

P~h i uq,s!5
1

A2ps2
exp„2@$h i2h̃ i~q,s!%2/2s2#…U~h i !

12$12erf@h̃ i~q,s!/s#%d~h i !U~2h i !, ~29!

whereU(x) is the Heaviside step function,h̃ i(q,s) is the
same as defined in Eq.~2!, and erf(x) is the error function

erf~x!5
1

A2p
E

2`

x

dt e2t2/2. ~30!

The factor multiplying thed function ensures a correc
normalization and it assigns the proper weight to the pea
zero, which is larger the more the average rateh̃ i(q,s) is
close to zero. A similar distribution has already been cons
ered in networks of threshold linear neurons@15,16#.

The analytical evaluation of the mutual information is o
viously more difficult than in the case of the simple Gau
ian, because of the presence of the error function, wh
cannot be integrated exactly. Nonetheless, in the limit
large s it is possible to evaluate both the linear and t
2-6
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THEORETICAL MODEL OF NEURONAL POPULATION . . . PHYSICAL REVIEW E64 021912
quadratic approximation inN, and thus, quantify the impac
of the correction with respect to the Gaussian case, Eq.~22!.

A. The limit of large s for the TG model: the equivocation

We remind the expression of the equivocation, Eq.~6!

^H~$h i%uq,s!&q,s5K (
s51

p E dqE )
i

dh i P~q,s!

3P~$h i%uq,s!log2 P~$h i%uq,s!L
«,q0

.

~31!

Assuming independence among neurons in the co
tional probabilityP($h i%uq,s), Eq. ~31! can be written

^H~$h i%uq,s!&q,s5
N

ln 2 (
s51

p E dqP~q,s!

3K E dhP~huq,s!ln P~huq,s!L
«,q0

.

~32!

In the specific case of the distribution~29! it is easy to
show that

K E dh P~huq,s!ln P~huq,s!L
«,q0

5
1

A2p
K h̃~q,s!

2s
e2@h̃~q,s!#2/2s2L

«,q0

2 1
2 @11 ln~2ps2!#

3^erf@h̃~q,s!/s#&«,q01K E
0

`

dh d~h!

3$12erf@h̃~q,s!/s#% ln d~h!1 ln 2

1 ln$12erf@h̃~q,s!/s#%L
«,q0

. ~33!

To proceed with the calculation, we have to be care
with the integration of the delta function. In fact, it is easy
show that the integration of the productd(x)ln d(x) yields a
logarithmic divergence. Since the mutual information m
remain finite with a finite number of neuronsN, we expect
this divergence to cancel exactly with an analogous term
the rate entropy and, in fact, in the next section, we w
show that this is the case. For the moment, we use the eq
ity

E
2`

1`

dx d~x!F~x!5 lim
e→0

E
2e/2

e/2

dx
1

e
F~x!. ~34!

Assuming, as usual, that the quenched disorder is ide
cally distributed across neurons and stimuli and thath̃(q,s)
is like in Eq. ~1!, we can write
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^H~$h i%uq,s!&q,s

5
N

2 ln 2 H @11 ln~2ps2!#^erf@h̃~q,s!/s#&«,q0

2K h̃~q,s!

A2ps
e2@h̃~q,s!#2/2s2L

«,q0

12^@12erf$h̃~q,s!/s%#&«,q0 ln
e

2

22^@12erf$h̃~q,s!/s%#

3 ln@12erf$h̃~q,s!/s%#&«,q0J . ~35!

The average across quenched disorder cannot be
formed if we do not resort to some approximation. Since
have already focused on the limit of larges, it is natural to
consider an expansion of the error function in Eq.~30! for a
small value of its argument

erf~x!.
1

2
1

1

A2p
x1o~x2!. ~36!

Approximating all the error functions in Eq.~35!, we ob-
tain

^H~$h i%uq,s!&q,s5
N

2 ln 2 H 1

2
@11 ln~2ps2!#1 ln~e!

1K h̃~q,s!

A2ps
L

«,q0

@21 ln~2ps2!22 lne#

2
1

p K h̃~q,s!2

s2 L
«,q0

J 1o~1/s2!, ~37!

where in line with the approximation used in the case of
simple Gaussian distribution we have omitted terms of or
N/sk with k.2.

B. Evaluation of the mutual information

We reconsider Eq.~7!. Using replicas and assuming th
the quenched randomness is identically distributed ac
neurons, we obtain

H~$h i%!52
1

ln 2
lim
n→0

1

n S (
s1¯sn1151

p E dq1¯dqn11

3
1

~2pp!n11 K E dh )
k51

n11

P~huqk ,sk!L
«,q0

N

21D ,

~38!

where P(huq,s) is given in Eq.~29!. Integrating overdh
yields
2-7



g

r

re
os

ca-
ic
a

sian
d

e

no
n,

if-

ted.
the
yti-

VALERIA DEL PRETE AND ALESSANDRO TREVES PHYSICAL REVIEW E64 021912
K E dh )
k51

n11

P~huqk ,sk!L
«,q0

N

5K ~n11!21/2
1

~A2ps2!n
exp~2R!

3erfS 1

An11
(

k
h̃~qk ,sk!/s D 1S 2

e D n

3)
k

F12erfS h̃~qk ,sk!

s D G L
«,q0

N

, ~39!

where we have used Eq.~34! to integrate thed function in
Eq. ~29!, and the expression ofR is like in Eq. ~11!. Using
the approximation~36! for the error function and considerin
the expansion for smalln

an.11n ln a ~40!

we obtain

H~$h i%!52
1

ln 2
lim
n→0

1

n F (
s1¯sn1151

p E dq1¯d

3qn11

1

~2pp!n11 S 12nC2 (
k,lÞk

GklD N

21G ,

~41!

where

C5
1

2 F1

2
$11 ln~2ps2!%1 ln~e!1(

k
K h̃~qk ,sk!

A2ps
L

«,q0

3@21 ln~2ps2!22 lne#G , ~42!

Gkl5
1

8~n11!s2 F ^@h̃~qk ,sk!2h̃~q l ,sl !#
2&«,q0

2
1

2p
^h̃~qk ,sk!h̃~q l ,sl !&«,q0G . ~43!

It is simple to verify thatC remains finite whenn goes to
zero. Now we expand in powers ofN up to the second orde

S 12nC2 (
k,lÞk

GklD N

.12NS nC1 (
k,lÞk

GklD
1

N2

2 (
k,lÞk

(
%,mÞ%

GklG%m ,

~44!

where we have omitted terms that areo(n) whenn→0. This
quantity has to be summed over continuous and discrete
licas, after having explicitly performed the average acr
02191
p-
s

quenched disorder in Eqs.~42! and ~43!. It is easy to show
thatC cancels exactly with analogous terms in the equivo
tion, Eq. ~37!. The evaluation of the linear and quadrat
term in the mutual information can be performed with
similar technique to the one used in the case of the Gaus
distribution and it involves averaging terms with two- an
four-replica interactions.

The final expression for the mutual information in th
linear and quadratic approximation reads

I ~$h i%,q ^ s!.
1

ln 2
HN~h0!2

4s2 S 1

2
1

1

p D Fp21

p
2~a2A1!2l1

12$A22~A1!2%l2G2
N2~h0!4

2~4s2!2

3S 1

2
1

1

p D 2F H p21

p2 2@2~a2A1!2l1#2

1Fp21

p
~l12l2!21

~l2!2

p G
3H S 1

22m21D 4

(
n50

m21 F S 2m
n D G4J GJ. ~45!

Comparing Eqs.~22! and~45!, it is evident that modifying
the Gaussian model into the more realistic TG model has
effect on the analytical expression of the mutual informatio
except for a renormalization of the expansion parameterg2

5(h0/2s)2:

g85gA 1
2 11/p. ~46!

Figure 5 shows the effect of the renormalization for d
ferent values ofg2. The mutual information is lower in the
TG model than in the Gaussian approximation, as expec

We have explored whether the two models can fit
information rise estimated from real data. Since the anal

FIG. 5. Information rise as in Eqs.~22! and ~46! for different
values of the expansion parameterg25(h0/2s)2; m51; p54; the
distribution%~«! in Eqs.~15! and~16! is just equal to1

3 for each of
the three allowed« values of 0,12, and 1.
2-8
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cal expression of the mutual information is the same in b
cases, the fit does not change between the two models.

Figure 6 shows the comparison between the informa
estimated from a sample of cells recorded in the right p
mary motor cortex@10# and the prediction given by either o
the two theoretical distributions. In the limit of larges, the
Gaussian model fails to provide a good fit, but we can c
clude that this failure is not due to the inclusion of negat
rates in the distribution.

V. INFORMATION LOSS IN AVERAGING ACTIVITY
DISTRIBUTIONS

Figure 1 suggests that the directional tuning of real cell
modulated, albeit moderately, by the type of movement.
fact, the analysis of real data has proved that the codin
the direction is not unique, but it is specific to the compl
correlate that is being considered@10# ~here, which arm
moves!.

More in general, distinct features characterizing a co
plex stimulus are not expected to be coded independentl
one another. This raises the question of how central re
sentations of external correlates are constructed and w
are the basic featural components of these representat
Of course, the categorization of natural stimuli is arbitra
and the more accurate a description is provided, the hig
the dimensionality of the stimulus set. Since an infinite nu
ber of different descriptors could be chosen to characteri
stimulus, any~finite! categorization has the effect of emph
sizing somerelevantfeatures and averaging out otherirrel-
evant features. An obvious consequence is that we end
even involuntarily, evaluating how some features are co
on average, with respect to the dimension we have chos
explicitly or implicitly, to neglect.

Thus, with correlates that have one continuous and

FIG. 6. Comparison between the theoretical curves, Eqs.~22!
and ~46!, and the information estimated from a sample of ce
recorded in the right primary motor cortex@10#; m51; p52; the
distribution%~«! in Eqs.~15! and~16! is just equal to1

3 for each of
the three allowed« of 0, 1

2, 1; the values ofg25(h0/2s)2 used for
the fit are 0.64 for Eq.~22! and 0.78 for Eq.~46!
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discrete dimension, one might wonder which are the relati
ships among the information carried about the total num
of continuous1discrete dimensions, the information carrie
about the continuous dimension, disregarding the discrete
mension, and finally, the information carried about the co
tinuous dimension, if a single value of the discrete dimens
had been fixed when recording neural activity. In oth
words, suppose that we investigate how the direction
codedon averageacross different types of movement. Th
corresponds to averaging the full distributionP($h i%uq,s)
on s

P~$h i%uq,s!→(
s

P~s!P~$h i%uq,s!5Ps~$h i%uq!.

~47!

The resulting expression of the mutual information is

I ~$h i%,^q&s!5K E dqE )
i

dh i P~q!

3Ps~$h i%uq!log2

Ps~$h i%uq!

P~$h i%! L
«,q0

.

~48!

The analytical evaluation is very similar to the cases
ready discussed.

As usual, the mutual information can be expressed as
difference between the entropy of the responsesH($h i%) and
the equivocation̂H($h i%uq)&q , where

^H~$h i%!uq!&q5K E dqE )
i

dh i P~q!

3Ps~$h i%uq!log2 Ps~$h i%uq!L
«,q0

,

~49!

H~$h i%!5K E dqE )
i

dh i P~q!Ps~$h i%uq!log2

3F E dq8P~q8!Ps~$h i%uq8!G L
«,q0

. ~50!

We focus on the more realistic TG model, Eq.~29!; the
entropy of the responses is obviously independent on
chosen categorization of the stimuli; in the limit of larges,
the procedure is precisely the one followed in the previo
section.

The difference with respect to the cases already discus
is in the evaluation of the equivocation: sincePs($h i%uq) is
obtained averaging the distribution~29! acrosss, we need to
introduce discrete replicass1¯sn , as when evaluating the
entropy of the responses. Then the calculation is straight
ward and the basic steps are given in the previous sec
and in the Appendix.

Since in one case~for the entropy of the responses! we
sum both over discrete and over continuous replicas, an
2-9
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the other case~for the equivocation! we sum only on discrete
replicas, it is clear that all terms that do not involve two
more replica interacting cancel out.

More in detail, if the evaluation of the entropy of th
responses requires the analytical calculation of averages
as ^h̄(qk)h̄(q l)&q0 ~see the Appendix!, these averages dis
appear in the evaluation of the equivocation, since rep
indexes are only for the discrete variables.

The final result for the mutual information up to the qu
dratic approximation reads

I ~$h i%,^q&s!.
1

ln 2
HN~h0!2

4s2 S 11
2

p D @A22~A1!2#

3Fl22
p21

p
l1G2

N2~h0!4

2~4s2!2 S 1

2
1

1

p D 2

3Fp21

p2 8@~a2A1!42~A222aA11a2!2#

3~l1!21Fp21

p
~l12l2!21

~l2!2

p G
3H S 1

22m21D 2

(
n50

m21 F S 2m
n D G4J GJ. ~51!

Figure 7~a! compares the averaged information,
I ($h i%,^q&s), with the full informationI ($h i%,q ^ s), where
in the case ofI ($h i%,q ^ s) we have putp51. The full in-
formation calculated withp51 in fact gives the curve one
would obtain, on average, by considering only one mo
ment type~or value of the discrete correlate! at a time. As
one could expect, averaging the distribution across the
crete correlates results in an information loss. Moreover,
full information with p54 movement types is obviousl
above thespecificone, obtained by settingp51 @compare
Figs. 5 and 7~a!#.

Figure 7~b! shows the dependence of the full and av
aged information on the numberp of discrete correlates
Contrary to thefull information, theaveragedinformation
decreases monotonically withp, both in the linear and in
quadratic approximation.

As one would expect, averaging the distribution acros
large numberp of correlates is equivalent to a regularizatio
of the activity distribution, which results in a lower mutu
information.

VI. DISCUSSION

We have studied a model of the coding
discrete1continuous stimuli by a population ofN neurons,
referring to the specific case of movements categorized
cording to a direction and a type. We have shown that,
ymptotically in the limit of large populations of neurons, th
mutual information tends to infinity logarithmically with th
resolution in the continuous dimension. This result aside,
have focused on the initial rise of the mutual informati
with the population size, which may offer a more direct co
parison with the analysis of real data.
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In the limit of large noise we have therefore derived
analytical formula for such initial rise of the information, u
to the quadratic approximation. We have examined the
pendence on the number of discrete correlates and on
width of the directional tuning. A comparison with the info
mation estimated from real data, in which the linear term
used as a fit coefficient, has shown that the quadratic
proximation fails to capture the deviation from linearity.

We have then considered a more realistic model for
conditional firing distribution, a thresholded Gaussian with
d peak. We have shown that this more realistic distribut
simply renormalizes the expansion parameter applicable
the Gaussian distribution. Therefore, the discrepancy in
fit to real data does not originate in the firing rate distrib

FIG. 7. Mutual information in the linear and quadratic appro
mations, as in Eqs.~46! and ~51!, for a sample of 10 cells;g2

50.7; m51; the distribution%~«! in Eqs. ~15! and ~16! is just
equal to1

3 for each of the three allowed« values of 0,12, and 1.~a!
Full curve as a function of the population sizep51 for the full
information I ($h i%,q ^ s) and p54 for the averagedinformation
I ($h i%,^q&s). ~b! Dependence on the number of movement typesp.
Dotted lines are for the asymptotes,p→`.
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tion. There are several possible reasons for this discrepa
The value of the expansion parameterg25(h0/s)2 cor-

responding to the best fit in Fig.~6! is quite high (g2

50.78). This value is in the range where the quadratic
proximation is expected to fail on its own@see Figs. 3 and 5#.
Adding higher orders in perturbation theory might impro
the fit. Moreover, we have neglected terms of orderN/sk

with k.2, which might be non-negligible wheng2 becomes
large andN is not too small.

Information estimates from real data are often biased
cause of poor sampling. Several procedures have been
posed to correct the bias@17#, but the improvement given by
the correction is not precisely quantifiable, and sampling
ases cannot be discarded for good.

Both with the TG model and in the Gaussian approxim
tion, we have assumed that neurons fire independently of
another to each movement, but the analysis of extracell
recordings has shown that correlations may play a n
negligible role in the coding@11,18#.

Finally, we have examined the effect of averaging t
distribution across the discrete correlates, evaluating the
tual information with respect to the continuously varying d
mension alone. As expected, averaging the distribu
acrosss results in an information loss, which is more serio
the larger the numberp of discrete correlates.

Further developments of this work include: the introdu
tion of weak correlations in the signal of different neuro
and the analysis of the information transfer to other stage
processing, given this as the coding scheme in the input la
of the network. In the specific case of movement, cod
these research directions might help model how informa
is transmitted down the motor system, in the planning a
execution of motor tasks.
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APPENDIX: DETAILED EVALUATION OF THE SECOND-
ORDER COEFFICIENT

We show here how to evaluate the coefficient of the q
dratic term in Eq.~12!, that we write again

(
k,lÞk

(
%,mÞ%

^~«sk
@h̄~qk!2h f #2«sl

@h̄~q l !2h f # !2&«,q0

3^~«s%
@h̄~q%!2h f #2«sm

@h̄~qm!2h f # !2&«,q0.

~A1!

This quantity has to be integrated over continuous a
discrete replicas. First we perform the average across
quenched variableq0 . Expanding the products, it is easy
see that the quantities to be averaged are all simila
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^h̄(qk)&q0 and^h̄2(qk)&q0, that we have already calculate
in Eqs. ~19!, ~20!. Another average that we need
^h̄(qk)h̄(q l)&q0, with kÞ l :

^h̄~qk!h̄~q l !&q05~h0!2H S 1

22mD 2F S 2m
m D G2

1
1

2 S 1

22m21D 2

(
n50

m21 F S 2m
n D G2

3cos$~m2n!~qk2q l !%J . ~A2!

Thus, only terms such as^h̄(qk)h̄(q l)&q0 still depend on
continuous replicas.

Since terms like cos(m2v)(qk2ql), with kÞ l
are zero when integrated onqk ,q l , the only term that
requires a careful evaluation in performing the integ
tion on continuous replicas is the produ
^h̄(qk)h̄(q l)&q0^h̄(q%)h̄(qv)&q0.

After integration on continuous replicas this term yield

~h0!4H S 1

22mD 4F S 2m
m D G4

1
1

4 S 1

22m21D 4

(
n50

m21 F S 2m
n D G4

~dk%dm l1dkmd% l !J .

Rearranging all terms one has, finally,

(
k,lÞk

(
%,mÞ%

@~a2A1!2^~«sk
2«sl

!2&«1@A22~A1!2#

3^«sk

2 1«sl

2 &«#x1@~a2A1!2^~«s%
2«sm

!2&«

1@A22~A1!2#^«s%

2 1«sm

2 &«#1^«sk
«kl

&«^«s%
«sm

&«

3S 1

22m21D 4

(
n50

m21 F S 2m
n D G4

~dk%dm l1dkmd% l !, ~A3!

whereA1 andA2 are defined in Eqs.~19! and ~20!. To cor-
rectly perform the summation across the discrete replicas
to keep only terms of ordern in the limit n→0, we consider
separately the different contributions to the sum

(
k,lÞk

(
%,mÞ%

⇒ (
kÞ lÞ%Þm

1 (
%,kÞ lÞm

~d%k1d% l !

1 (
m,kÞ lÞ%

~dmk1dm l !

1 (
m,%,kÞ l

~dmkd% l1d%kdm l !. ~A4!

Since in Eq.~A3! terms such aŝ(«sk
2«sl

)2&« are zero if

sk5sl , we have to distinguish between different cases
each term in Eq.~A4! in performing the summation on dis
crete replicas
2-11
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(
s1

¯ (
sn11

⇒(
s1

¯ (
skÞsl

(
s%Þsm

¯ (
sn11

1(
s1

¯ (
sk5sl

(
s%Þsm

¯ (
sn11

1(
s1

¯ (
skÞsl

(
s%5sm

¯ (
sn11

1(
s1

¯ (
sk5sl

(
s%5sm

¯ (
sn11

. ~A5!

With a bit of combinatorics and keeping only the term
order n, which give a finite contribution in the limitn→0,
we obtain the final result for the second-order term

N2~h0!4

2~4s2!2 Fp21

p2 2@2~a2A1!2l1#21Fp21

p
~l12l2!21

l2
2

p G
3H S 1

22m21D 4

(
n50

m21 F S 2m
n D G J G,
D

ics

ol.

02191
where the expressions ofl1 ,l2 are given in Eqs.~15!, ~16!.
Considering the result obtained at the first order, Eq.~18!, it
is easy to derive the expression for the mutual informat
up to the second order inN/s2

I ~$h i%,q ^ s!.
1

ln 2
HN~h0!2

4s2 Fp21

p
2~a2A1!2l1

12„A22~A1!2
…l2G2

N2~h0!4

2~4s2!2

3Fp21

p
2@2~a2A1!2l1#2

1Fp21

p
~l12l2!21

l2
2

p G
3H S 1

22m21D 4

(
n50

m21 F S 2m
n D G4J GJ.
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