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In a recent study, the initial rise of the mutual information between the firing ratdsetirons and a set of
p discrete stimuli has been analytically evaluated, under the assumption that neurons fire independently of one
another to each stimulus and that each conditional distribution of firing rates is Gaussian. Yet real stimuli or
behavioral correlates are high dimensional, with both discrete and continuously varying features. Moreover, the
Gaussian approximation implies negative firing rates, which is biologically implausible. Here, we generalize
the analysis to the case where the stimulus or behavioral correlate has both a discrete and a continuous
dimension, like orientation and shape could be in a visual stimulus, or type and direction in a motor action. The
functional relationship between the firing patterns and the continuous correlate is expressed through the tuning
curve of the neuron, using two different parameters to modulate its width and its flatness. In the case of large
noise, we evaluate the mutual information up to the quadratic approximation as a function of population size.
We also show that in the limit of largl and assuming that neurons can discriminate between continuous
values with a resolutioA9, the mutual information grows to infinity like In(A/) whenAd goes to zero.
Then we consider a more realistic distribution of firing rates, truncated at zero, and we prove that the resulting
correction, with respect to the Gaussian firing rates, can be expressed simply as a renormalization of the noise
parameter. Finally, we demonstrate the effect of averaging the distribution across the discrete dimension,
evaluating the mutual information only with respect to the continuously varying correlate.
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[. INTRODUCTION ment, i.e., a discrete correlatdn trying to characterize the
neural coding of these movements, we were particularly in-
The strategy used by populations of neurons to code foterested in whether, as it is reasonable to expect, different
external stimuli or behavioral correlates is a major issue thafnotor areas differ, at least quantitatively, in their coding
has been recently investigated both through data analysis afoperties. The results, obtained from records of activity in
theoretical modeling. The mutual information between exterréas Ml and SMA, will be reported elsewhéi®]; but they
nal correlates and the spiking activity of the population issuggest the importance of developing theoretical models of

one way to assess such coding quantitatily Several how populatior)s of neurons might code simultaneously dis-
analyses have focused on the coding ofliacrete set of crete and continuous correlates. For example, one clear con-

stimuli ([2], see[3] for a review, which is the paradigm used clusion has been that type and direction areindependent
i1 man e;( erimentf4—-7]. In 'Ehis situation. the mutual in- dimensions of the movement, in the sense, for example, that
formati)(;n ig bounded by. the entropy of ’the stimulus Setthe information about direction, extracted from the activity

) . . “~"recorded with all movement types, is much lowesughly
Some theoretical studies have also considered the coding If) of the average information about direction, obtained
stimuli varying in acontinuousdomain[8,9], which is inter- '

. . ) . : ~ .with a single movement type.
esting with respect to basic properties such as orientation in c5n we embody similar properties in a model of the

visual stimuli, frequency in auditory stimuli, velocity, and scheme used by neurons to code movements? What would
position in motor actions. In particular, ii®], the authors  then be the dependence of the mutual information on the
have studied the asymptotitarge population behavior of  number of the possible types of movement? How would it
the mutual information, with respect to a stimulus with adepend on the resolution with which the continuous correlate
continuously varying dimension. is sampled? How would it depend on the level of noise af-
To our knowledge, no study has been proposed so faecting the firing patterns?
considering a mixture of both continuous and discrete fea- In a recent worK2], some of these questions have been
tures, which is obviously closer to real-world stimuli or be- investigated for a set gf discrete stimuli, under the assump-
havioral correlates. Moreover, the initial rise of the mutualtion that neurons fire independently of one another to each
information for small but increasing population size is morestimulus and that the distribution of the firing rates is Gauss-
relevant for a comparison with estimates from real data, aian. The linear and the quadratic approximations to the mu-
least as far as the possibility of having simultaneous recordtual information as a function of population size were studied
ings from very large populations of neurons is restricted toanalytically, in the limit of large noise, as well as the ap-
very few cases. proach to the ceiling in the case of small noise. We general-
We have recently analyzed data recorded in the motoize this study considering both a discrete and a continuous
areas of behaving monkeys, in the laboratory of Eilon Vaa-dimension in the stimulus, referring specifically to motor ac-
dia. The monkeys moved a manipulandum in several posions characterized by a direction and a “type.” Nonetheless,
sible directions(approximating a continuous correlatend  our model is equally applicable to other complex correlates.
with different combinations of arm&four typesof move-  We introduce a more realistic conditional firing rate distribu-
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tion than the simple Gaussian one, and find a simple result-
ing correction to the Gaussian model: the analytical expres-
sion of the mutual information remains the same, except for
a renormalization of the expansion parameter.

We then evaluate the information loss when the original
activity distribution is averaged across the discrete correlate,
as is sometimes the case in the analysis of real data, and the
mutual information is evaluated solely with respect to the
continuously varying feature. Averaging out dimensions in
the stimulus corresponds to losing accuracy in its descrip-
tion, and hence, the information loss.

Our theoretical analysis allows a direct comparison with
real curves; we present one comparison and discuss possible
causes for the discrepancy between data and model. In par-
ticular, correlations between neurons, which are not included
in the model, might play a relevant role, enhancing or de-
creasing redundancy in population codifil]. This issue
will be the object of future work.
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FIG. 1. Directional tuning curve for a cell recorded in the right

supplementary motor area of a monkey performing four different

types of arm movement. UniLt, unimanual left; UniRt, unimanual

Il. THE GAUSSIAN MODEL

right; BiSym, bimanual symmetric; BiOpp, bimanual opposite. On

. ) . ~__ thexaxis, angles are in degrees. Notice that the type of movement
First, we consider a coding scheme where the distributioRtrongly modulates the amplitude of directional tuning, but not so
of the firing rates conditional to the movements is Gaussianmuch its preferred direction.

similar to the case examined &]. This assumption implies

that negative rates have a nonzero probability to occur, but i6f neuroni, given the movement parametrized by,§),
allows an easier analytical treatment. We will examine &follows a Gaussian distribution centered around a tuning

more realistic scheme later on.
Consider the following distribution:

Noog
P({m}lﬁ,s>=i1jl szexp(—[{ni—77i<19,s>}2/2cr2]),

@

curve 7;(9) whose flatness is modulated through the param-
eterse. If e} is zero for some particulas; the firing of the

cell does not depend, for that movement type, on the direc-
tion of the movement. On the other handelf assumes a
fixed value for alls, the directional tuning does not modulate
with the type of movement. Tuning curves with a cosinusoi-

dal shape have already been considered to model the direc-

7, is the firing rate of neuromn § ands parametrize, respec-
tively, the direction and the type of movemefi;(d,s) is

tional selectivity of sensory neurofi8]. Figure 2 shows the
amplitude of the tuning curve.

the average firing rate of the neuron with the movement pa- We neglect the modulation of the preferred direction with

rametrized byd, s.

the type, as it would burden the analytical calculations; it

In general, the directional tuning of real cells in motor will be the object of future analyses.

cortices is modulated by the type of movement performed.

We show an example of this mOdUlation, with the typ|Ca||” EVALUATION OF THE MUTUAL INFORMATION FOR
THE GAUSSIAN MODEL

shape of tuning curves, in Fig. 1. The modulation of the
preferred direction looks weaker than the overall amplitude
modulation.

We are interested in the mutual informatidi2] between

For our model, we have considered the following func-the neuronal firing rates and the movements:

tion:
Bi(0,5)=esm(9)—(1—e9)n/, 2)
G-
79— 9) =7 cosZm(T')
1 (2 1 2
~t| gl e 2, (V)
Xcoi(m—v)(ﬁ—ﬁ?)}}, 3
Its

&L is a quenched random variable distributed between 0 and
1. The meaning of Eqgl), (2), and(3) is that the firing rate

021912-2

X ({mi}|9,5)log,

possible realizations.

p
|({ni},ﬁ®s)=<521 fdﬂfl_i[ d7;P(9,s)P

P({m) >ﬂ @

where the distributionP(7;|9,s) is given in Eqg.(1) and
(), 90 is @ short notation for the average across the quenched
variables{sL},{9}. In fact, we are not interested in a par-
ticular realization of the tuning, but in the average across all

Equation(4) can be written as

[{ i} 0@s)=H{m}) —(H{n}H.9))s,s.

©)
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o The evaluation of the rate entropi({ »;}) can be carried
" out introducingn replicas[13,14] for both the discrete and
the continuous dimension$ ands, which allows us to get
rid of the logarithm in Eq(7)
H 1 I ! i ddq--dd
o ({m})_—mnITOH o & 1 n+1
1
>< R —
J H dy]l(zﬂ_p)nJrl
v N n+1
[y —el 7
" 130 <Hl kl_ll \/_zexp( [{ 7 8s|<7]l("9k)
[ ~(1-&b) n!}2/202]>> —1). )
,I/tl “\\ £,90
;l l‘. ‘\ Integrating ovef 7;} and rearranging terms, one obtains
RN 11 2
met s H{m}) =~ lim — > ddy - ddn.q
m=5 ' ‘! ‘\‘ n—0 S1--Sp+1=1
o LDV
ro! : (SN il
T @mP)™ (V2ma?)
0 — O == 0
% o 4m ><<_ exp(— R)> (10
() ! &, 90
FIG. 2. Cosinusoidal tuning curves as in E¢8) and (3). (a)
m= 1, modulation for different values af;. (b) es=1, modulation R = (90— nf
for different values ofn. ! ; {ssk[ (%) =]
p —es[m(9) = 7{1}[4c*(n+1)]. (1]
(H{ 7} 9,8))5,s= Sglfdﬁf H d#nP(9d,s)P({ 7}
A. Large o limit
x| ¥,s)log, P({ni}|ﬁ,s)> , (6) An exact analytical evaluation of E(L0) is not possible
8,1‘}0

without resorting to some approximation. In line with the
analysis performed if2] we assume now that the quenched

p K . K L
randomness is uncorrelated and identically distributed across
H({ﬂi}):<521 fdﬁf H d7P(9,s)P({m}|9,s)log, neurons,

N
p iy —
> fdﬁ'P(s'ﬁ')P({ni}lﬂ',s')]> | 9({85})‘(13 9<85)) '
s'=1 £,90
™

The calculation of the equivocatiofH ({7}|9,s))s s is
straightforward and the result is additive in the population e assume also that' = »' V,. Then one can write,
size

X

1
e({ﬂ?})=[e(ﬂ°)]N=W.

__N <H exp(—Ri>> =(exp—R))" 0.
(H({n}|0.8)p =575 [1+In2me™)]. (8§ b X

The linearity inN is standard whenever the conditional dis- We consider now the limit of large noiseg in this case,
tribution of firing rates can be factorized across neurons, asinceR=1/a?, we can expand exp(R); keeping only terms
in Eq. (1).

of order (N/o¥)', with k<2 andl=1,2 we obtain

021912-3
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N2 N _ _
(exXp(—R))y yo=1—N(R), yo+ 7<R>§,00: 1= 2521 k%k {es[7(90) — 71— es[7(9) — "1}

e,90
1 N? » 2 )
T a2t Dk 02 ((es[ (00— 01— e[ n(9) = 7" D?)e 9o (65 [7(9p) = 7']
—SsM[W( 9,0 = 1'% 0. (12
To first order inN/a?, we obtain,
1 1 P (n+1)~N2 1
{ﬂl}) 2 Ii|mo ﬁLimgﬂl dﬁ1"'dﬁn+1 (pr)n+l ( ’ﬁZWU )nN
I > e[ M0 — ' T—es[ (%) — 11} -1 (13
4a?(n+1) |y O T AT eI L 40 '

__ This result is valid for a generic directional tuning curve 5
7(9). We consider now our specific choice, E8), exam- )‘ZZJ de o(e)e”. (16)
ining the simplest casen=1 first. After averaging across

. . .. 0 . . .
direction selectivitie 9~} and integrating over continuous 0. Eqs(14) and(8) the final expression for the mutual

replicasd;: -+ #n.1, we obtain, information can be written
1 1 P (n+1) N2 1 02
H lim = 1 N(7)°|p—
b= "jpz Im n[El P (m™  Nmhdes)=j5 = o o= 2lata= D+
N(7°%)? )
1- T2+ 1) i E {{a(a—1)+7] +1n,. 17
X((es,— e 2y +1(e2 +g2 8}) —1, In the more general case of a powen2f the cosine, in
Eq. (3), it is easy to show that the final result can be ex-
pressed as
where we have defined= '/ 7°. To perform the average
across the quenched variables} we assume that they are 1 N(7%?2
equally distributed acrogs movement types, namely |({77i}ﬂ5‘®3):m P 2(a ANy
e({ss}>=fS[ e(e)=[e(e)]". +2{A2—(A1)2})\2}, (19
In this case, the sum over indexksand| generatesi(n where

+1) identical terms. The summation on discrete replicas
yields a factorp”** multiplying the term((es)?), and a 1 (2
o . _ m
factor p"(p—1) multiplying the term((ssk—esl)2>s, since 7PAL=(7(9))) go= 770@( 0 ) (19
this last term is nonzero only whep#s; .
Taking the limitn—0 yields

0.2 1 4m
N N(7%)? 0)2 (7°)2A= (7 (D)) 9o=(7° ) om/ (20

_ The calculation of the coefficient of the second-order
p_z[a(a 1)+, +1 )\2}, (14)  term, which multipliesN?/¢* in Eq. (12), is slightly more

P complex and implies integration of terms with four-replica
interaction. The detailed analytical evaluation is given in the
Appendix. The final result up to the quadratic approximation
reads

2
: (15)

>\1=f de o(s)e2— fds o(e)e
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FIG. 3. Information rise, from Eq22), for different values of
the expansion parametgf=(7%20)2; m=1; p=4; the distribu- @)
tion g(g) in Egs.(15) and(16) is just equal toﬁ for each of the three
allowede values of 0, 1/2, and 1. 14

1 [N(z%?[p-1 1a]
|({77i},1‘}®3)2m % pTz(a’—Al)z)\l \\1
1k
N2(770)4 p_l \\\e

+2{A— (Al)z})\z} -

2y 12, |P71 2 0.6F
X2[2(a—=Ap)N ]+ T()\l_)\Z) ’
L) ( 1 )4”‘2‘1 (2m 4 o4r
p 2°mt) = [\ ’ 0.2}
—— lin/

e | e
where the expressions af;, A,, A;, A, are given, respec- 1 2 m 8 ‘
tively, in Egs.(15), (16), (19), (20). In the limit of largep we (b)
have

FIG. 4. Mutual information in linear and quadratic approxima-
1 [N( 770)2 tion as in Eq.(22), for a sample of 10 cellgg?=0.7; the distribu-
[({n},9®8)=—= [ ———[2(a— A1)\ tion o(e) in Egs.(15) and(16) is just equal to; for each of the three
In2| 4o allowed e values of 0,%, and 1.(a) Dependence on the number of
2(,0\4 movement type®. Dotted lines are for the asymptotes, Kg2);
(7°) d li for th EB2)
+2{A,— (Al)z})\z]— m m=1. (b) Dependence on the powar of the cosine in Eq(3); p
=4,
4
X[ (Ag—\y)2 (%) for the linear approximation and somewhat stronger for the
2 quadratic one. In both cases, an increase in the number of
molri,oe discrete correlatep produces an increase in the mutual in-
X > m) ] J (220  formation. The distance between the linear and the quadratic
v=0 L[\ ¥ approximation remains asymptotically finitdor p— ),

contrary to what happens in the case of discrete stimuli alone
Figure 3 shows the linear and the quadratic approximaf2].
tions of Eq.(22) for different values of the expansion param-  Figure 4b) shows the dependence of the mutual informa-
eterg®=(7%20)2. It is easy to see that, for very small val- tion on the width of the directional tuninsee Fig. 2b)].
ues of g2, linear and quadratic approximations roughly Since we are considering the case when the neiielarge,
coincide, while wherg?>0.8, the quadratic approximation a very narrow tuning ind corresponds to a larger overlap in
begins to fail and one should add higher orders in perturbathe conditional probabilitiep( 7| 9,s), for most anglesy. A
tion theory. consequence is that, especially in the linear approximation,
Figure 4a) shows the dependence of the mutual informa-the mutual information is @slowly) decreasing function of
tion on the number of typgs The dependence gnis weak m.
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B. The limit of large N

PHYSICAL REVIEW B4 021912

Now we take the limitN—oo. As it is evident from Eq.

We consider now the case when the number of neurons i€ "), €XP(-R)<1 and expt-R)=1 whens,=s; andky,=k
large. Since we deal with an infinite number of stimuli, the for €ach pair of indexegm,)). Thus, whenN—-, the only

mutual information is unbounded. Thus, we expect that whe€'mS that survive in the sum on replicas are the ones with

the number of neurons becomes large, and the noise is finit§ =S2 " =Sn+1 and ky=Kk,'--=Kk,,,. Since we havep

the mutual information tends asymptotically to infinity.

In order to study this limit we discretize th8} space into
a finite set ofM=2#/A9 anglesd,---dy, and then we
take the limitA 9—0.

The entropy of the responseH{#;}) can be written

p M
H({m})=<s§=:1 glfﬂ d7;P(9,S)

X P({ni}|9,s)log,

p M
X| 2 2 P(s',ﬁmP({mHﬁkfs’)b ,
s'=1k'=1 .90
(23
where in analogy with Eq1l) we define
N

Pl 9109) =TT ——s exp(~ [{ 7~ L7 (90

7 ks i=l\/m 7 s k
—(1—ey n/}*20)), (24)

stimuli sandM stimuli 9, the total number of terms islp.
Substituting this value in the sums over replicas in &)
and putting expt R)=1 one obtains an expression for the
entropy of the responsed({#;}), which summed to the
equivocation as in E(d8) gives the final result for the mutual
information:
({7}, 9®s)=10gy(p) +10g2(M). (28)

Now we remember tha¥l =27/A¥. Taking the limit to
continuous anglesA99—0, it is easy to see that asymptoti-
cally the mutual information tends logarithmically to infinity.

IV. BEYOND THE GAUSSIAN ASSUMPTION: THE TG
MODEL

So far we have considered the case where the rate distri-
bution for each neuron is normal. This assumption implies
that negative rates have a nonzero probability to occur; the
more the average rate is small and close to zero, the more
this probability becomes large. The bias introduced by the
inclusion of negative rates in the space of possible states
might be even more serious since we have considered the
limit of large noise, where the tail of the distribution in the

and we discretize the average across the directional selectivitomain »<<0 acquires a significant weight.

ties {97} as well as

M
| ave0-3 oo (25)

This situation corresponds to the case when each neurqp.

can discriminate across different anglés---dJ) with a
resolutionAd.

The calculation can be carried out introducing replicas as p( | 9,s)=

in the previous case. One gets

1 . p M (n+ 1)—N/2
H({nl})_ - ﬁ r![no ﬁ Sl---3r12+1=l kel =1 (M p)n+1
1 N
XW@XK—R) Je,00— 1], (26)
where
Rz[% {es[7(0) — '] -es_
X[(9,)— 7' /[40*(n+1)]], (27)

Cutting the distribution at zero is not enough to assign the
proper weight to under-threshold activity: each time the sum-
mation of the inputs coming from other units is lower than
threshold the neuron remains silent, and this occurs with a
well-defined probability.

A natural choice for the rate distributioR( ;| 9,s) is a
eshold Gaussian plus&peak in zerd TG mode),

1
Wexp(— {7 =7i(9,9)}120*1)O ()

+2{1—erf[7(9,5)/ o1} () O(— m),

where ©(x) is the Heaviside step functiof;(9,s) is the
same as defined in EQR), and erf{) is the error function

(29

erf(x)=i J " dtetn (30)
V2 ) '

The factor multiplying theé function ensures a correct
normalization and it assigns the proper weight to the peak in
zero, which is larger the more the average ratéd,s) is
close to zero. A similar distribution has already been consid-
ered in networks of threshold linear neurqi$,16.

The analytical evaluation of the mutual information is ob-
viously more difficult than in the case of the simple Gauss-

and we have assumed symmetry across neurons in thian, because of the presence of the error function, which
qguenched randomness and in the parameters characterizingnnot be integrated exactly. Nonetheless, in the limit of

the conditional distributioP(7;|s, ).

large o it is possible to evaluate both the linear and the

021912-6
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guadratic approximation ifl, and thus, quantify the impact (HU{ 7}9,9) 9 s
of the correction with respect to the Gaussian case (). '

= 2 7
A. The limit of large o for the TG model: the equivocation 2In2 { [1+In(27o®) Kerl7(9,5)/o]). 90

- < 7(9.5) e[?;(ﬁ,s>]2/20—2>

270

We remind the expression of the equivocation, &j.

e,90

p
<H({77i}|19'5)>a,s:<521fdﬁfl_i[ dnP(9.s)

+2([1—erf{(9,8) 0} ])s 40 |n§
X P({nl}l 1‘}!S)|092 P({nIH 19!S)>

e 90 —2([1—erf{7(9,5)/0}]
(3D
Assuming independence among neurons in the condi- X'n[l_erf{%(‘?’s)/"}]%,ﬂo]' (39
tional probabilityP({ 7;}|9,s), Eq.(31) can be written

N P The average across quenched disorder cannot be per-
_ _N formed if we do not resort to some approximation. Since we
(HU7i}|9.9)5.5 In 2521 f d9P(9,s) have already focused on the limit of large it is natural to
consider an expansion of the error function in E2p) for a

Il value of its argument
><< J an(nIﬁ,S)lnP(nlﬁ,S)> . sma
e, 0
(22) f(x) St (x%) (36)
erf(x)= = + —=x+0(x9).
2 2=
In the specific case of the distributid@9) it is easy to o ) )
show that Approximating all the error functions in E¢35), we ob-
tain
dn P(7|9,s)In P(ﬂ|0,5)> N (1
“ .0 (H{ i} 9.9)9.5= 575 { 5[1+In(270?)]+In(e)
2In2]2
1 /(8,8 -0 2,2
= (D7 o= [9(9,9)]720 _1 2 ~
\/ﬂ< P e > . 5[1+In(2707)] 7(9,9) X
e,y + [2+In(27m0°)—2In€]
- N2mo o 90
x{er[p(d,s)/o]), g0+ fd 1]
(erf[7(9,8)/a])s, 50 < , d7(m) 1 /5(9.5)2 ,
- — > +o(1lo®), (37
x{1—erf[7(9,8)/a]}in 8(7)+In2 ™ 0 £, 90
. where in line with the approximation used in the case of the
+In{1—erf n(ﬁ,S)/”]}> ﬂo' (33 simple Gaussian distribution we have omitted terms of order

N/ oK with k>2.

To proceed with the calculation, we have to be careful
with the integration of the delta function. In fact, it is easy to B. Evaluation of the mutual information

show that the integration of the produtx)In &) yields a We reconsider Eq(7). Using replicas and assuming that

logarithmic divergence. Since the mutual information musthe quenched randomness is identically distributed across
remain finite with a finite number of neuroM§ we expect  neurons. we obtain

this divergence to cancel exactly with an analogous term in

the rate entropy and, in fact, in the next section, we will 1 P
show that this is the case. For the moment, we use the equaH({ 7;})=— 3 lim — > doy - dd,y g
ity NenoN\spospig=1
1 n+1 N
+oo €2 1
f dx5(x)F(x)=Iimf dx=F(x). (39 X—(zwp)n+1<Jd”kﬂl P(vlﬁk,sk)> —1>-
— e,0J—e2 € &, 90

(38)
Assuming, as usual, that the quenched disorder is identi-

cally distributed across neurons and stimuli and #h@f,s) where P(7|9,s) is given in Eq.(29). Integrating overd
is like in Eg. (1), we can write yields

021912-7
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n+1 N a6l i .
O -~ - lin/gauss -
< J dnkljl P(7]|ﬁkysk)> 3.4H —+- linttg ”

3.2H 8- quadig *
&,90 3t * +

exp(—R) il :
)" 2ot * - :

=<(n+1)1’2(

1

> A0, s)lo |+ 2
Vvn+1 'k

X erf —
€
(0,
x]1 {1—erf LTl
K ag

N i
> , (39 06l e ”
.90 - paddE

6 8 10 12 14 16 18 20 22 24

where we have used E34) to integrate thes function in 2 o 14
0. Of cells

Eqg. (29), and the expression @R is like in Eq. (11). Using
the approximatiort36) for the error function and considering  FIG. 5. Information rise as in Eq$22) and (46) for different

the expansion for smati values of the expansion parametge=(7°/20)%; m=1; p=4; the
distributiong(¢) in Eqgs.(15) and(16) is just equal to_%, for each of
a"=l+nlna (400 the three allowed values of 0,3, and 1.
we obtain quenched disorder in Eq&2) and (43). It is easy to show
b that C cancels exactly with analogous terms in the equivoca-
H({ﬂ‘})=—i lim }{ D fdﬂ od tion, Eqg. (37). The e_valuatlonj of the linear and quad.ranc
: N2~ o N|spdriq-1 1 term in the mutual information can be performed with a

similar technique to the one used in the case of the Gaussian

1 N distribution and it involves averaging terms with two- and
XﬂnJer( 1—nC—k%k le) 1, four-replica interactions.
’ The final expression for the mutual information in the
(41 linear and quadratic approximation reads
where 1 IN(7%%(1 1\[p—-1
|({7]i},13®5)2m[?(E—F—)[—Z(Q_Al)z)\l
~ (o p
1|1 ) 7( 9, Si)
C==|={1+In27e)}+In(e)+ >, { ——— 2, 0\4
2|2 <\ N2 [ e £ 2{As (ApFh, |- )
2 1 2 2(40_2)2
><[2+|n(2mz)—2|ne]} (42 1\ [p—1
X E-ﬁ-; ?Z[Z(Q—Al)z)\l]z
_ ~ ~ 2 p—1 (Xp)?
Gk|—w[<[ﬁ(ﬂk-sk)—ﬁ(ﬁl,S|)] Ve, 90 + e (A1=Xp)?+ 0
1 4m—1 4
T ~ 1 2m
5 (0,8 M(D1,81))s 90| (43 x[ W) VZO ( V) ]H (45)
It is simple to verify thatC remains finite whem goes to Comparing Eqs(22) and(45), it is evident that modifying

zero. Now we expand in powers bfup to the second order o ca,ssian model into the more realistic TG model has no

effect on the analytical expression of the mutual information,

N
1-nC— >, Gy| =1-N|nC+ >, le) except for a renormalization of the expansion paramgter
KTk KT#k =(7%20)%
N2
+— > 2 GGy, 9'=gV3i+1m. (46)
2 K7k o ito
(44) Figure 5 shows the effect of the renormalization for dif-

ferent values ofy?>. The mutual information is lower in the
where we have omitted terms that a@) whenn—0. This TG model than in the Gaussian approximation, as expected.
guantity has to be summed over continuous and discrete rep- We have explored whether the two models can fit the
licas, after having explicitly performed the average acrossnformation rise estimated from real data. Since the analyti-
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18— o discrete dimension, one might wonder which are the relation-
140« in ships among the information carried about the total number
130 = ﬁlrl:/ig" of continuous-discrete dimensions, the information carried
12| =~ quadicorr about the continuous dimension, disregarding the discrete di-
11 mension, and finally, the information carried about the con-
1 tinuous dimension, if a single value of the discrete dimension
091 had been fixed when recording neural activity. In other
208F words, suppose that we investigate how the direction is
=o7r codedon averageacross different types of movement. This
06F corresponds to averaging the full distributi®({»;}|9,s)
0.5; ons
04f
0.3r
02k P({m}lﬂ,S)—Qs‘, P(s)P({7i}|9,8)=Ps({mi}|9).
01r (47)
1234567 8N30f1ge||1s1 121314 15 16 17 18 The resulting expression of the mutual information is

FIG. 6. Comparison between the theoretical curves, E2@.
and (46), and the information estimated from a sample of cells |({77i}:<19>s): f dﬁf H dniP(d)
recorded in the right primary motor cort¢%Q]; m=1; p=2; the '

distributiong(e) in Eqs.(115) and(16) is just equal t%l for each of P({7}|9)
the three allowed: of 0, 3, 1; the values of?>=(%%/20)? used for X Ps({ni}] ﬂ)logzp— .
the fit are 0.64 for Eq(22) and 0.78 for Eq(46) ({mi}) £,90

. : o . 48)
cal expression of the mutual information is the same in both (

cases, the fit does not change between the two models. The analytical evaluation is very similar to the cases al-
Figure 6 shows the comparison between the informationieady discussed.

estimated from a sample of cells recorded in the right pri- As usual, the mutual information can be expressed as the

mary motor cortex10] and the prediction given by either of difference between the entropy of the respori$ésy;}) and

the two theoretical distributions. In the limit of large the  the equivocatiofH({7}|¥))s, where

Gaussian model fails to provide a good fit, but we can con-

clude that this failure is not due to the inclusion of negative . _ ,
rates in the distribution. (HAmHI0)s <f dﬁf H dmP(D)

V. INFORMATION LOSS IN AVERAGING ACTIVITY X Ps({ni}|9)log, Ps({7i}] 1‘})> ,
DISTRIBUTIONS &, 90

Figure 1 suggests that the directional tuning of real cells is (49
fact, yhe anal_yas of rgal data hfi; proveq_that the coding of H{ )= f dﬁj H d7P(9)P({ 7} 9)log,
the direction is not unique, but it is specific to the complex [
correlate that is being considergdO] (here, which arm

. - . dd'P(9")P iHo' . 50)

More in general, distinct features characterizing a com- f ( (o) >8 50 (
plex stimulus are not expected to be coded independently of '
one another. This raises the question of how central repre- We focus on the more realistic TG model, E&9); the
are the basic featural components of these representatiorosen categorization of the stimuli; in the limit of large
Of course, the categorization of natural stimuli is arbitrarythe procedure is precisely the one followed in the previous
and the more accurate a description is provided, the highesection.
ber of different descriptors could be chosen to characterize & in the evaluation of the equivocation: sineg({ 7;}| ) is
stimulus, any(finite) categorization has the effect of empha- obtained averaging the distributi¢®9) acrosss, we need to
sizing somerelevantfeatures and averaging out othieel- introduce discrete replicas;---s,, as when evaluating the
even involuntarily, evaluating how some features are codeward and the basic steps are given in the previous section
on average with respect to the dimension we have chosenand in the Appendix.
explicitly or implicitly, to neglect. Since in one caséfor the entropy of the responsese

modulated, albeit moderately, by the type of movement. In

moves. X

sentations of external correlates are constructed and whicentropy of the responses is obviously independent on the

the dimensionality of the stimulus set. Since an infinite num-  The difference with respect to the cases already discussed

evantfeatures. An obvious consequence is that we end upentropy of the responses. Then the calculation is straightfor-
Thus, with correlates that have one continuous and onsum both over discrete and over continuous replicas, and in
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the other caséor the equivocationwe sum only on discrete 08— e
replicas, it is clear that all terms that do not involve two or o adi®s
more replica interacting cancel out. 071 L lin/<d>,
More in detail, if the evaluation of the entropy of the —+— quadi<d>
responses requires the analytical calculation of averages suc |
as{n(%) n(9))) 0 (see the Appendijx these averages dis-
appear in the evaluation of the equivocation, since replica
indexes are only for the discrete varialsle o4l
The final result for the mutual information up to the qua- ~
dratic approximation reads 03t
1 IN(%%? 2 ) 02t
|({Ui},<ﬂ>s)—m{Tar 1+ —|[A2=(A)7]
0.1}
-1 N2 0\4 1 1 2
- Pt - (772)2 1.1 L
2(409)°\2 = 1 2 3 4 5 6 7 8 9
No. of cells
p—1 ()
x|z Blla= A= (A= 2aA;+ a®)’]
p-1 (r2)? H
X2 [ = (=N P+ — } 1f
p p 09
1\ 2m) )4 } 08}
X[ 2 ml) Vzo v ' ) 07t

Lo.6f

Figure 7da) compares the averaged information, -
[({7i},{0)s), with thefull information! ({7;},9®s), where
in the case of ({7;},9®s) we have putp=1. The full in- 0.4r

formation calculated wittp=1 in fact gives the curve one  03f

0.51

would obtain, on average, by considering only one move- g,| e gﬁfd?ﬁs@’s
ment type(or value of the discrete correlatat a time. As W e linj<d>
one could expect, averaging the distribution across the dis: e QUad/<>,
crete correlates results in an information loss. Moreover, the % 2 4 20 100

full information with p=4 movement types is obviously P
above thespecificone, obtained by setting=1 [compare (b
Figs. 5 and 7@)].

Figure 1b) shows the dependence of the full and aver-
aged information on the numbegr of discrete correlates.
Contrary to thefull information, theaveragedinformation

decreases monotonically wit, both in the linear and in Full curve as a function of the population sipe=1 for the full

quadratic approximation. information | ({ ;},9®s) andp=4 for the averagedinformation

As one would expect, av_eragin_g the distribution across ({1 (9).). (b) Dependence on the number of movement types
large numbep of correlates is equivalent to a regularization potted lines are for the asymptotgs,- .

of the activity distribution, which results in a lower mutual
information. In the limit of large noise we have therefore derived an
analytical formula for such initial rise of the information, up
VI. DISCUSSION to the quadratic approximation.. We have examined the de-
pendence on the number of discrete correlates and on the
We have studied a model of the coding of width of the directional tuning. A comparison with the infor-
discretetcontinuous stimuli by a population & neurons, mation estimated from real data, in which the linear term is
referring to the specific case of movements categorized aassed as a fit coefficient, has shown that the quadratic ap-
cording to a direction and a type. We have shown that, asproximation fails to capture the deviation from linearity.
ymptotically in the limit of large populations of neurons, the  We have then considered a more realistic model for the
mutual information tends to infinity logarithmically with the conditional firing distribution, a thresholded Gaussian with a
resolution in the continuous dimension. This result aside, we peak. We have shown that this more realistic distribution
have focused on the initial rise of the mutual informationsimply renormalizes the expansion parameter applicable to
with the population size, which may offer a more direct com-the Gaussian distribution. Therefore, the discrepancy in the
parison with the analysis of real data. fit to real data does not originate in the firing rate distribu-

FIG. 7. Mutual information in the linear and quadratic approxi-
mations, as in Eqs(46) and (51), for a sample of 10 cellsg?
=0.7; m=1; the distributiong(e) in Egs. (15 and (16) is just
equal to} for each of the three alloweslvalues of 0,3, and 1.(a)
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tion. There are several possible reasons for this discrepancy(9)) g0 and{7%(%y)) 40, that we have already calculated
The value of the expansion parametgr=(7%o)? cor- in Egs. (19), (20). Another average that we need is

responding to the best fit in Fig6) is quite high ¢  (7(9) 7(9)) g0, with k#1:

=0.78). This value is in the range where the quadratic ap-

proximation is expected to fail on its owWeee Figs. 3 and]5 e o 1 2 [2m\]?
Adding higher orders in perturbation theory might improve (D) 7(9)) 90= (7)) | 52m) ||

the fit. Moreover, we have neglected terms of ortgp™

with k>2, which might be non-negligible wheg? becomes 10 1 \25 [ [2m\]?
large andN is not too small. + 5 W) ~ ( v )

Information estimates from real data are often biased be-
cause of poor sampling. Several procedures have been pro-
posed to correct the bid47], but the improvement given by xcog(m—v)(F— )}
the correction is not precisely quantifiable, and sampling bi-

ases cannot be discarded for good. Thus. onlv terms such &3 9.)7( 9 still depend on
Both with the TG model and in the Gaussian approxima- s, onty uch 8s( 919 (1)) g0 st P

. - continuous replicas.
tion, we have assumed that neurons fire independently of one gjca  terms  like cost—v)(S— ), with k%I

another to each movement, but the analysis of extracellulag
recordings has shown that correlations may play a nonfequires a careful evaluation in performing the integra-

ne?:liig;lTlle rv?/ls it?af/r:aeecfgrir?i%aldlgé effect of averagin thetion on  continuous replicas is the - product
Y 99 T 9 7(91)) 902 9) (D)) 0.

distribution across the discrete correlates, evaluating the m
tual information with respect to the continuously varying di-

. (A2)

re zero when integrated oit,,9;, the only term that

" After integration on continuous replicas this term yields

mension alone. As expected, averaging the distribution 1 \4{2m\ 14
acrosssresults in an information loss, which is more serious (7;0)4| (ﬁ) [ m
the larger the numbew of discrete correlates.
Further developments of this work include: the introduc- 1/ 1 VA1 iom 14
tion of weak correlations in the signal of different neurons T _<W) > ) (8o 0,1+ 8,0 |)}-
and the analysis of the information transfer to other stages of 412 = v e e

processing, given this as the coding scheme in the input layer
of the network. In the specific case of movement, coding

these research directions might help model how information

is transmitted down the motor system, in the planning and > > [(a—A)¥(es—2s)%).+[A—(A)?]
execution of motor tasks. ki#k e.n#e

X (&3 +ed)sx+[(a—ADX(es,~ 85 )7).

Rearranging all terms one has, finally,
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gram Grant No. RG 0110/1998-B. whereA; andA, are defined in Eqg19) and (20). To cor-
rectly perform the summation across the discrete replicas and
APPENDIX: DETAILED EVALUATION OF THE SECOND- to keep only terms of order in the limit n—0, we consider
ORDER COEFFICIENT separately the different contributions to the sum

am—1

>

4
(Oko 81t dkubol), (A3)

1
22m-1

We show here how to evaluate the coefficient of the qua-

dratic term in Eq(12), that we write again > 2 = >+ > (St )
kI#k o,u#0 k#l#£0#pn o k#l#u

— _fq_ — _ f1\2
kwg%g((ssk[nwo 7'1=es[7(9) = 7'1)%), 90 +M’k;¢g(5ﬂk+5m)
X (o5 [7(00) = n'1= e [7(3,) = n'1)?)s 0.
(A1) t 2 (Budat Sdu).  (A4)

This quantity has to be integrated over continuous and Since in Eq(A3) terms such aé(ss, —&5)?), are zero if
discrete replicas. First we perform the average across thg=s;, we have to distinguish between different cases for
quenched variable,. Expanding the products, it is easy to each term in Eq(A4) in performing the summation on dis-
see that the quantities to be averaged are all similar torete replicas
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where the expressions af ,\, are given in Eqs(15), (16).

E 2 =>2 z ; 2 Considering the result obtained at the first order, @§), it
L Sl S ST %eTSm o Said is easy to derive the expression for the mutual information
H 2
T YT Y SIS up to the second order iN/o
S1 SK=S| Sp#Sm Sn+1
L 1 IN(79?%[p—1
;1 Skzsl ngsm Sn2+1 |({ﬂi}aﬁ®s)2m[v TZ(Q—Al)ZM
+EZ Z > . (AB) , N2( 70)4
S1 TS STSm o Sn+1 +2(A2— (A1), 24022
With a bit of combinatorics and keeping only the terms
ordern, which give a finite contribution in the limibh—0, p—1 N
we obtain the final result for the second-order term X P 2[2(a=A1)™\]
N2(7%)*|p—1 p—1 2 p—1 %
| 2[2(a— AN 2 | (N~ )P — (A= A)2+ 2
2(402)2| p2 [2(a—Ap)N\] 0 (A= N2) D 0 (A1—=N2) b
1 4m—1 2m 1 4m-1 2m 4
SE== I (i <z 3, 7))
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